来自中国科学院福建省物质构造研究所的学者首先进行了事理打算,对目标催化剂进行了预筛选,然后成功地制备了实验中的有效催化剂,并用该催化剂演示了一种高功率密度的硝酸锌电化学电池。在低过电位下,正极催化剂可以同时促进还原的NO3-到NH4+和氧化的OH-到O2的反应,从而促进全体电池的反应:NO3-+3H2O→NH4++2OH-+2O2。所制得的电化学电池对NH4+的选择性超过90%,高功率密度超过25 mW cm-2,在12.5 mA cm-2下稳定循环35h。此外,这种硝酸锌电化学电池可以在光伏电池的驱动下事情,太阳能对NH3的效率高达19.5%。这项事情证明了一种理论上筛选的催化剂,实现了光伏驱动的高速锌-硝酸盐电化学电池系统。干系文章以“A High Power Density Zn-Nitrate Electrochemical Cell Based on Theoretically Screened Catalysts”标题揭橥在Advanced Functional Materials。
论文链接:
https://doi.org/10.1002/adfm.202209464

图1.潜在催化剂的打算。a)NiRr在Co(001)面上的Gibbs能图。b)Co3O4表面OER反应的Gibbs能图。c)以NiRr的吉布斯自由能(ΔGrxn(NiRr))为描述符,对NiRr反应的催化剂进行筛选研究。d)以速率确定的OER的吉布斯自由能(ΔGrxn(OER))为描述符的OER催化剂筛选研究
图2.DM-Co正极的表征。制备好的DM-Co: a)高分辨率SEM图像。b) Co 2p高分辨率XPS谱。电化学反应后:c) NiRR后的高分辨率TEM图像。d) OER后的SEM图像。e) OER后的高分辨率TEM图像。f) OER后Co 2p的高分辨率XPS谱
图3.用Ar电化学还原法评价DM-Co在1M KOH(含1M KNO3)中的电化学活性。a) LSV在5mv s-1处的曲线。b)恒电位电解中NH3的FE。c) LSV曲线。d) OER的Tafel地块。
图4.水溶液可充电硝酸锌电化学电池。a)设计的电化学电池示意图。b)放电和充电极化曲线。c)放电和充电电压增大。d)采取DM-Co催化剂正极的Zn -硝酸盐电化学电池放电极化曲线和合成功率密度。e)不同电流密度下的放电试验。f)电化学电池放电时的NH3 FE。g)在12.5 mA cm-2下进行76次循环的恒流放电-充电循环曲线。
图5.a)光伏驱动的锌-硝酸盐电化学电池系统示意图。b) GaAs太阳能电池的电流-电压曲线(蓝色曲线)和Zn -硝酸盐电化学电池的电荷极化曲线(赤色曲线)。c)光伏驱动硝酸锌电化学电池在不同充电电流下的充电曲线。d) 5 mA永劫光恒流放电时NH3 FE、放电电压和太阳能-NH3 PCE
综上所述,本研究从理论开始制备了一种有效的NiRR和OER双功能催化剂DM-Co,在此根本上,实现了高功率密度的水性可充电硝酸锌电化学电池。DM-Co双功能正极在−0.2 V时显示出具有100%FE和130 mA cm–2的NiRR,在310 mV时具有10 mA cm–2的碱性OER。所得的电化学电池具有以下总电池反应:NO3–+ 3H2O →NH4++ 2OH– + 2O2。电化学电池在放电电流密度为 28 mA cm–2 且功率密度超过 25 mW cm–2时实现了 91% 的 NiRR FE。此外,还实现了光伏驱动的硝酸锌电化学电池,最大NO3-还原为95%,太阳能-NH3效率为19.5%。本研究的事情成功展示了一种光伏驱动的可充电硝酸锌电化学电池系统。(文:SSC)
本文来自微信公众年夜众号“材料科学与工程”。欢迎转载请联系,未经容许回绝转载至其他网站。